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Part A.

What's wrong with conventional optimisation



We must deploy new renewable, transmission and storage capacity.
But how much? and where?

The standard.
Optimising the
system re-design

Energy system models provide quantitative insights on such questions.

How? turning those into a mathematical problem, for which an ‘optimal’
solution can be found T
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Cost-optimality.

Is it desirable?

Lombardi, Pickering, Colombo, Pfenninger. Joule, 2020. doi.org/gg8z6v
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Two issues when applied to socio-technical systems:

1. Real-world decisions involve much more than economic cost
(social acceptance, environmental impact, ...)

Cost-optimality.
Generalisable
shortcomings

And multi-objective optimisation won't help! We cannot
parametrise all that matters for real-world decisions



Cost-optimality.
Generalisable
shortcomings

Two issues when applied to socio-technical systems:

2. Itis pointless to fixate on the minimum cost considering the
uncertainty surrounding all cost assumptions
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Part B.

(Next-generation) Modelling to Generate Alternatives



Methods to explore the near-optimal region have been
proposed in 1979 and then developed throughout the ‘80s

They are known as Modelling to Generate Alternatives (MGA)
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* When applied to public-sector planning, traditional least-cost optimization models and
Alte rn atlves R their offspring, contemporary multiobjective models, have often been developed under the
optimistic philosophy of obtaining “the answer.” Frequently, such models are not very useful
because there is a multitude of local optima, which result from wavy indifference functions,
and because important planning elements are not captured in the formulations. Omitted
elements, in fact, may imply that an optimal planning solution lies within the inferior region
of a multiobjective analysis instead of along the noninferior frontier. The role of optimization
methods should be re-thought in full recognition of these limitations and of the relevant
planning process. They should be used to generate planning alternatives and to facilitate their
evaluation and elaboration; they should also be used to provide insights and serve as catalysts
for human creativity. As illustrated by recent examples, these roles may require the use of
several models as well as new types of optimization formulations and modified algorithms
and computer codes.
(GOVERNMENT; OPTIMIZATION MODELS; PLANNING; POLICY ANALYSIS)
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Adapted from: Lombardi, Pickering, Pfenninger. Applied Energy. 2023. doi.org/10.1016/j.apenergy.2023.121002
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SPORES.
Spatially and
technologically
distinctive
alternatives

An original development of MGA designed for spatial detail,
computational efficiency and real-world relevance
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SPORES.

Europe-wide
application

Explore the results yourself: explore.callio.pe/
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In the last three years,

exponential growth of
the topic
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Part C.

Latest trends and developments
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Lombardi, Pfenninger. PLOS Climate. 2025. doi.org/nprk 15
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Machine-learning
surrogate models

Al

Technical
resilience.

Lombardi, Pickering, Pfenninger. WindSPORES project final report. 2023. edu.nl/kwx93
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Originally piloted in: Van Til (supervisor. Lombardi), TU Delft MSc Thesis. 2021
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MGA as
sensitivity.

What can you do for a time- and resource-constrained analysis?

e.g. maximise
e.g. ‘batteries are less cost-  battery while cost is
effective than H, storage’ relaxed by 5%

Change
objective to mg
test claim Z

Results and

key claims test run

e.g. ‘batteries are less cost- .
effective than H, storage More solid
but can still replace it for claims
marginally higher costs’

A

battery
H, You don’t get a complete

picture of all the options, but
you can at least test whether
your key claims are solid

Installed
capacity

Increasing cost
relaxation

First proposed in: Lombardi, Pickering, Pfenninger. Applied Energy, 2023. https://doi.org/j457
Prominently featured in: Lombardi, van Greevenbroek, Grochowicz, Lau, Neumann, Patankar, Vagerd, [forthcoming]

Single MGA
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Cost-optimisation provides a false sense of certainty

Next-gen MGA enables technically-robust and socially-viable designs

Computational cost can be tailored to needs and keeps improving

Largely overlapping with the conclusions in: Lombardi, van Greevenbroek, Grochowicz, Lau, Neumann, Patankar, Vagero, [forthcoming]
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