Generating alternative energy system design options that match real-world needs. The human-trained SPORES algorithm

Francesco Lombardi

Faculty of Technology, Policy and Management Energy and Industry section

Part A.
Shortcomings of single-objective optimisation

Two generalisable shortcomings:

1. Real-world decisions involve much more than economic cost (social acceptance, environmental impact, ...)

Research gaps. Is cost-optimal actually desirable?

Two generalisable shortcomings:

2. It is silly to fixate on the minimum cost considering the uncertainty surrounding all cost assumptions

Research gaps. Is cost-optimal actually desirable?

Part B.

Generating alternatives (MGA) and limitations therein

An original development of "Modelling to Generate Alternatives" (MGA) designed for spatial detail, computational efficiency and real-world relevance

SPORES.
 Spatially and technologically distinctive alternatives

Explore the results yourself: explore.callio.pe/

1. make explicit the search for spatially-distinctive solutions

$$
\min Y=\sum_{j} \sum_{i} w_{i j} x_{i j}^{c a p}
$$

Repeat

SPORES.
 Algorithmic workflow

2. use multiple search directions in parallel

SPORES.
 Where we left

What is redundant and what is not? Computational trade-offs in modelling to generate alternatives for energy infrastructure deployment Francesco Lombardi ${ }^{\text {a, }}{ }^{*}$, Bryn Pickering ${ }^{\text {b }}$, Stefan Pfenninger ${ }^{\text {a }}$
"Finding alternatives entails a trade-off between spatial and technology dissimilarity"
"Focussing on finding all high-level technology alternatives may leave key spatial configuration options unexplored"
"Ideal solution: iterating the decision space with stakeholders"

Part C.

Integrating stakeholder preferences in an MGA loop

Humans in the loop.
 Practical
 procedure

Example set of 260 SPORES from seeds-project.org in Portugal

Humans in the loop. Impact on matching stakeholder needs

1. When applied to supporting decisions, MGA requires stakeholder inputs to match real-world needs

Thank you. Questions?

2. Cutting-edge MGA-MOO (e.g. SPORES) lends itself to customisation based on elicited stakeholder preferences
3. High-level or intangible preferences can be mapped down to technical features for use in an MGA-MOO formulation
4. The resulting human-in-the-loop (HIL) MGA option space is richer in design options that match stakeholder preferences
richer in design options that match stakeholder preferences

Additional material about
SPORES and ongoing
projects is available at
www.flombardi.org

Supplemental Information.

Example: most-liked option due to very low import dependency

Humans in the loop. Automated mapping of features

