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Part A. 
Shortcomings of single-objective optimisation
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Research gaps. 
Is cost-optimal  
actually desirable?

Two generalisable shortcomings:

1. Real-world decisions involve much more than economic cost
(social acceptance, environmental impact, ...)
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Cost

Decision variables

Minimum 
cost

Not-too-distant 
cost

Research gaps. 
Is cost-optimal  
actually desirable?

Two generalisable shortcomings:

2. It is silly to fixate on the minimum cost considering the uncertainty 
surrounding all cost assumptions



Part B. 
Generating alternatives (MGA) and limitations therein
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SPORES. 
Spatially and 
technologically 
distinctive 
alternatives

An original development of “Modelling to Generate Alternatives” (MGA) designed 
for spatial detail, computational efficiency and real-world relevance
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Explore the results yourself: explore.callio.pe/ 



Unlike conventional MGA, SPORES:

1. make explicit the search for 
spatially-distinctive solutions

Find optimal 
solution

Set / update
loc-tech weights 

Re-run
with new objective 1

Repeat

min cost
min sum of spatially-explicit 
weighted capacity decisions

while cost within n% of optimum

hundreds of
SPORES
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Wind 
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SPORES. 
Algorithmic 
workflow
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i: technologies
j: locations



2. use multiple search directions in parallel

Find optimal 
solution

Set / update
weights 

Re-run
with new objective 1

Repeat

Reset / update
weights 

Re-run
with new objective 2

min cost min sum of spatially-explicit weighted 
capacity decisions

while cost within n% of optimum

hundreds of
SPORESRepeat

min/max capacity of specific tech + min 
sum of spatially-explicit weighted 

capacity decisions
while cost within n% of optimum

SPORES. 
Algorithmic 
workflow
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“Finding alternatives entails a trade-off between spatial and 
technology dissimilarity”

“Focussing on finding all high-level technology alternatives may 
leave key spatial configuration options unexplored”

“Ideal solution: iterating the decision space with stakeholders”
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SPORES. 
Where we left

Lombardi, Pickering, Pfenninger. Applied Energy. 2023. doi.org/10.1016/j.apenergy.2023.121002

Push spatially-explicit 
distinctiveness

Push technology 
to extremes

Push either spatial or 
technology distinctiveness



Part C. 
Integrating stakeholder preferences in an MGA loop
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Humans in 
the loop. 
Practical 
procedure
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• Low imports
• Citizen-led
• ...

Stakeholder 
engagement

Most-liked 
options

Automated feature 
detection 

for each option

• PV: desired
• H2: undesired
• ...

• MGA
• min H2
• max PV
• ...

New MGA-MOO 
formulation 

for each option

HIL-MGA



Humans in 
the loop. 
Impact on 
matching 
stakeholder 
needs
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Example set of 260 SPORES from seeds-project.org in Portugal



1. When applied to supporting decisions, MGA requires 
stakeholder inputs to match real-world needs

2. Cutting-edge MGA-MOO (e.g. SPORES) lends itself to 
customisation based on elicited stakeholder preferences

3. High-level or intangible preferences can be mapped down to 
technical features for use in an MGA-MOO formulation

4. The resulting human-in-the-loop (HIL) MGA option space is 
richer in design options that match stakeholder preferences

Thank you.
Questions? 
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Additional material about 
SPORES and ongoing 
projects is available at 
www.flombardi.org 



Supplemental Information. 
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Humans in 
the loop. 
Automated 
mapping of 
features
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Example: most-liked option due to very low import dependency
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